

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 1153-1156

Tetrahedron Letters

Novel rearrangement of *N*-enoyl oxazolidinethiones to *N*-substituted 1,3-thiazine-2,4-diones promoted by NbCl₅

Hector Hernández,^a Sylvain Bernès,^b Leticia Quintero,^a Estibaliz Sansinenea^b and Aurelio Ortiz^{a,*}

^aCentro de investigación, de la Facultad de Ciencias Químicas, de la Benemérita Universidad Autónoma de Puebla, Puebla Pue. 72570, Mexico

^bInstituto de Ciencias, de la Benemérita Universidad Autónoma de Puebla, Puebla Pue. 72570, Mexico

Received 12 November 2005; revised 2 December 2005; accepted 5 December 2005

Abstract—NbCl₅ has been employed as promoter of a novel rearrangement to afford chiral *N*-substituted 1,3-thiazine-2,4-diones with one or two new stereogenic centers from di- and trisubstituted *N*-enoyl oxazolidinethiones. The trisubstituted *E*-isomers provide the *anti*-diastereomers mainly. © 2005 Elsevier Ltd. All rights reserved.

The six membered heterocyclic 1,3-thiazine-2,4-dione type has been the subject of great interest because of its different biological activities; for example, 5-ethyl-6-phenyl-1,3-thiazine-2,4-dione has been demonstrated to be an anesthetic agent, however also has exhibited undesirable side effects, as thrombophlebitis.¹ 3-(β -amino-ethyl)-1,3-thiazine-2,4-dione hydrochloride has been reported to have antiradiation activity.² Substituted 1,3-thiazine-2,4-diones and 1,3-thiazine-4-ones were patented as useful sedatives, hypnotics, intravenous anesthetics, or anticonvulsants.²

Much of the research in heterocyclic chemistry is concerned with the development of new methods for ring syntheses. The synthesis of the 1,3-thiazine-2,4-dione ring has been performed by different methods, for example, condensation of thiourea with α , β -unsaturated carboxylic acids in phosphoric acid^{3a} or sulfuric acid,^{3b} addition reaction of ethylenethiourea,^{4a} thiourea,^{4b} ethyl thioglycolate,^{4b} or *O*-ethyl allylthiocarbamate^{4c} to β -haloacids. The first chiral 1,3-thiazinedione has been obtained by addition reaction of an oxazolidinethione to *N*-enoyl oxazolidinethione.^{4d} In this letter we describe a novel rearrangement carried out with *N*-enoyl oxazolidinethiones using NbCl₅ as a promoter to provide chiral *N*-substituted 1,3-thiazine-2,4-diones. Compounds (2a–f) were prepared from 1 as previously described.⁵ Each of the compounds were added to a solution of (3.0 equiv) NbCl₅ in 100 mL of CH₂Cl₂ at -78 °C, followed by stirring at room temperature to provide the compounds (3a–f) as shown in Schemes 1 and 2.

3b $R_1 = Ph R_2 = H$ **4b** $R_1 = H R_2 = Ph$ **3c** $R_1 = {}^{i}Pr R_2 = H$ **4c** $R_1 = H R_2 = {}^{i}Pr$

Scheme 1. Reagents and conditions: (a) NaH, R₁CHCHCOCl, 0 °C CH_2Cl_2 ; (b) NbCl₅ (3.0 equiv), CH_2Cl_2 , rt.

^{*}Corresponding author. Tel.: +52 222 2295500x7518; fax: +52 222 2295584; e-mail: jaortizm@siu.buap.mx

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.12.019

 $2e = R_1 = Ph, R_2 = Me$ $2f = R_1 = R_2 = -(CH_2)_4$

Scheme 2. Reagents: (b) NbCl₅ 3.0 equiv, CH₂Cl₂, H₂O.

This rearrangement was carried out with di- $(2\mathbf{a}-\mathbf{c})$ and trisubstituted *N*-enoyl oxazolidinethiones $(2\mathbf{d}-\mathbf{f})$ to provide heterocyclic compounds with one $(3\mathbf{a}-\mathbf{c})$ or two $(3\mathbf{d}-\mathbf{f})$ new chiral centers (Scheme 2), in a range of 16–87% yield, all of them as colorless liquids, except for 3f and 4e as white solid compounds. The results of these reactions are shown in Table 1.

Table 1. Rearrangement of N-enoyl oxazolidinethiones

Products	t (h) ^a	Yield (%) ^b	dr (3:4) ^c
3a/4a	48	60.0	98/2
3b/4b	12	87.0	98/2
3c/4c	48	18.0	98/2
3d/4d	14	16.0	83/17
3e/4e	16	55.0	60/40
3f/4f	12	82.0	96/4

^a t =time.

^b Purified yield.

^c Diastereomeric isomer ratios were determined by ¹H and ¹³C NMR on the crude products.

From the data in Table 1, it was observed that the formation of new chiral centers in compounds 3a-c and 3f is highly diastereoselective, however in the case of compounds 3d and 3e there is a notable difference in the diastereomeric isomer ratios maybe because the formation of the second new chiral center is through a diastereoselective protonation reaction, giving at room temperature modest diastereoselectivity. The stereochemical outcome of the major diastereomers can be rationalized by comparison of the ${}^{3}J_{\rm HH}$ values for thiazines (3d-f and 4e) and the use of a generalized Karplus type relationship⁶ that allowed to establish the relative configuration of the two newly created stereogenic centers as anti for **3d**–f and syn for **4e** (as shown in Table 2). The absolute configuration at the newly formed stereogenic centers (C-5, C-6) are R and S, respectively, as established by X-ray analysis of the minority compound 4e (Fig. 1),

Table 2. Comparison of the vicinal coupling constants

Products	${}^{3}J_{\text{H-5-H-6}}(\text{Hz})$	Dihedral angle (°)
3d -(5 <i>S</i> ,6 <i>R</i>)	7.2	139
3e -(5 <i>S</i> ,6 <i>S</i>)	10.2	155
3f -(5 <i>S</i> ,6 <i>R</i>)	12.0	170
4e -(5 <i>R</i> ,6 <i>S</i>)	4.2	51

 $3f = 4f R_1 = R_2 = -(CH_2)_4$

Figure 1. Molecular structure of adduct 4e.

which is homologous to β -mercapto, the compound previously described.⁵

Absolute configuration for majority compounds (3a-f) was assigned on the basis of the comparison between the 1,3-thiazines and the β -mercapto compounds previously described.⁵ The formation of **3** can be explained by the previous formation of the immonium ion I,^{5c} which is obtained by an intramolecular sulfur transfer to C(β) in the *N*-enoyl oxazolidinethione **2** as a plausible conjecture. The unexpected elimination reaction led to the formation of the double bond in **3** as shown in Scheme 3.

The rearrangement was explored using the compounds **2a** and **2b** employing different amounts of promoter to provide the thiazines (**3a**,**b**) or β -mercapto carbonyl adducts^{5a} (**5a**,**b**) as shown in Scheme 4. The results of these reactions are shown in Table 3.

From the data in Table 3, it was observed that the formation of the thiazines **3a** and **3b** was carried out through a competitive reaction to the formation of the β -mercapto carbonyl adducts (**5a** and **5b**). When 3 equiv of NbCl₅ was used, the thiazine ring was favored while the use of 1.2 equiv lead to well known β -mercapto com-

Scheme 3. Possible course of the transformation of 2 to 3.

5a $R_1 = Me$ **5b** $R_1 = Ph$

Scheme 4.

Table 3. Optimization of the reaction of 2a and 2b

Compound	Promoter (equiv)	T (°C)/ t (h)	Yield ^a 3/5	dr ^b
2a	SnCl ₄ (1.2)	25/12	0/40	70/30
2a	SnCl ₄ (3.0)	25/18	0/43	69/31
2a	NbCl ₅ (1.2)	25/12	0/45	68/32
2a	NbCl ₅ (2.0)	25/12	15/24	90/10
2a	NbCl ₅ (3.0)	25/48	60/0	98/2
2b	NbCl ₅ (1.2)	25/14	60/0	76/24
2b	NbCl ₅ (1.2)	40/2	40/0	57/43
2b	NbCl ₅ (2.0)	25/14	40/50	80/20
2b	NbCl ₅ (3.0)	40/4	82/15	98/2
2b	NbCl ₅ (3.0)	25/12	87/0	98/2

^a Purified yield.

^b Diastereomeric isomer ratios were determined by ¹H and ¹³C NMR on the crude products of the major diastereoisomer.

pound.⁵ We also studied the effect of the temperature: at 40 °C in **2b** with 1.2 and 3.0 equiv of NbCl₅, it was observed that the reaction was oriented preferably to product **3b** in a shorter reaction time than at room temperature. Compound **2a** was treated with 1.2 and 3.0 equiv of SnCl₄ at rt, and in both cases provided a

diastereomeric mixture of β -mercapto adducts **5a**. For the formation of the double bond in the thiazines we currently do not have a rational explanation, since the rearrangement was further investigated using **2b** with 3 equiv of NbCl₅ and 1.5 equiv of NEt₃ to provide the thiazine **3b** in 60% yield in a reaction time of 6 h. Thiazines **3a** and **3b** were treated with 3 equiv of NaIO₄ and a catalytic amount of OsO₄ in THF/H₂O, to provide ketones **6a** and **6b** in 46% and 50% yield, respectively. To ketone **6b** was added NaBH₄ in MeOH at 0 °C to provide a diastereomeric mixture of (4*S*,5*S*)-**8a** and (4*S*,5*R*)-4-isopropyl-5-methyl oxazolidinone¹⁰ **8b** in a ratio 60:40, and the respective mercapto alcohol **7** in 44% yield, $[\alpha]_D^{25}$ -45 (*c* 0.5, CHCl₃) as shown in Scheme 5.

Scheme 5. Reagents: (a) $NaIO_4$, OsO_4 , THF/H_2O ; (b) $NaBH_4$, MeOH.

Complete assignment¹¹ of the ¹H and ¹³C NMR spectra of **3a–f** and **4e** was achieved by 2D proton–proton and 2D carbon–proton correlated experiments.

In conclusion we have found that NbCl₅ is an excellent promoter of a new rearrangement that was carried out in *N*-enoyl oxazolidinethiones to give chiral *N*-substituted 1,3-thiazine-2,4-diones with one or two new chiral centers. The *E*-isomers $2\mathbf{d}-\mathbf{f}$ provide the *anti*-diastereoisomers, $3\mathbf{d}-\mathbf{f}$ as main products.

Acknowledgments

We thank VIEP (project) 37/G/NAT/05. H.H. acknowledges a grant from Promep.

References and notes

- 1. Taborsky, R. G.; Starkey, R. J. J. Med. Chem. 1962, 5, 775–780.
- 2. Campaigne, E.; Nargund, P. K. J. Med. Chem. 1964, 7, 132–135.

- (a) Taborsky, R. G. J. Org. Chem. 1958, 23, 1779–1780;
 (b) Van Der Vliet, P. N. W.; Hamersma, J. A. M.; Speckamp, W. N. Tetrahedron 1985, 41, 2007–2010.
- (a) Campaigne, E.; Wani, M. C. J. Org. Chem. Soc. 1964, 29, 1715–1719; (b) Sohda, T.; Mizuno, K.; Tawada, H.; Sugiyama, Y.; Fujita, T.; Kawamatsu, Y. Chem. Pharm. Bull. 1982, 30, 3563–3573; (c) Campaigne, E.; Nargund, P. K. J. Org. Chem. 1964, 29, 224–226; (d) Ortiz, A.; Quintero, L.; Mendoza, G.; Bernès, S. Tetrahedron Lett. 2003, 44, 5053–5055.
- (a) Ortiz, A.; Quintero, L.; Hernández, H.; Maldonado, S.; Mendoza, G.; Bernès, S. *Tetrahedron Lett.* 2003, 44, 1129– 1132; (b) Ortiz, A.; Hernández, H.; Mendoza, G.; Quintero, L.; Bernès, S. *Tetrahedron Lett.* 2005, 46, 2243–2246; (c) Palomo, C.; Oiarbide, M.; Dias, F.; Ortiz, A.; Linden, A. J. Am. Chem. Soc. 2001, 123, 5602–5603.
- Cerda-García-Rojas, C. M.; Zepeda, L. G.; Joseph-Nathan, P. *Tetrahedron Comput.* 1990, *3*, 113.
- 7. Crystal data for 4e: $C_{18}H_{23}NO_2S$, M = 317.43, colorless plate, $0.60 \times 0.20 \times 0.08 \text{ mm}^3$, space group C2, cell parameters a = 22.097 (4), b = 8.6353 (15), c = 20.372 (3) Å, $\beta = 109.32$ (2)°, Z = 8, Z' = 2, $D_c = 1.150 \text{ g cm}^{-3}$, 9384 reflections collected on a Bruker P4 diffractometer at room temp., with the Mo-K α radiation ($\lambda = 0.71073$ Å) in the range $2\theta = 3.78-50.00^\circ$, of which 4786 are unique ($R_{\text{int}} = 0.039$), 407 variables refined: $R_1 = 0.0424$ [2723 data with $I > 2\sigma(I)$] and $wR_2 = 0.1235$ [all data].⁸ Absolute configuration was determined starting from the known configuration at C8 and confirmed by the refinement of a Flack parameter based on 1354 measured Friedel pairs, $\chi = 0.02(15)$.⁹ Complete data have been deposited with the CCDC, reference 289253. Structure factors and raw files are available on request to authors.
- Sheldrick, G. M. SHELXL97, University of Göttingen, Germany, 1997.
- 9. Flack, H. D. Acta Crystallogr. 1983, A39, 876-881.
- Mendoza, G.; Hernández, H.; Quintero, L.; Sosa-Rivadeneyra, M.; Bernès, S.; Sansinenea, E.; Ortiz, A. *Tetrahedron Lett.* 2005, 46, 7867–7870.
- 11. Compound **3a**. ¹H NMR (400 MHz, CDCl₃) δ : 5.02 (1H, s, H-1'), 5.00 (1H, s, H-1'), 4.77 (1H, d, J = 11.6 Hz, H-3'), 3.40 (1H, m, H-6), 2.97 (1H, dd, J = 4.4, 16.4 Hz, H-5), 2.72 (1H, dd, J = 8.8, 14.8 Hz, H-5), 2.70 (1H, m, H-4'), 1.65 (3H, s, CH_3 -2'), 1.33 (3H, d, J = 6.0 Hz, CH_3 -6), 0.90 (3H, d, J = 7.2 Hz, CH₃-5'), 0.75 (3H, d, J = 7.2 Hz, CH₃-5'). ¹³C NMR (100 MHz, CDCl₃) δ : 170.2 (CO), 168.3 (CO), 140.6 (C-2'), 116.1 (C-1'), 65.0 (C-3'), 43.0 (C-5), 31.8 (C-6), 26.6 (C-4'), 21.7 (CH₃-2'), 21.2 (CH₃-5'), 20.6 (CH₃-4'), 19.4 (CH₃-5'). $[\alpha]_D^{25}$ – 39.5 (*c* 2.1, CHCl₃). Compound **3b**. ¹H NMR (300 MHz, CDCl₃) δ: 7.40 (5H, m, Ph), 5.12 (1H, s, H-1'), 5.07 (1H, s, H-1'), 4.86 (1H, d, J = 10.8 Hz, H-3'), 4.60 (1H, dd, J = 5.1, 9.6 Hz, H-6), 3.28 (2H, m, H-5), 2.77 (1H, m, H-4'), 1.71 (3H, s, CH₃-2'), 0.98 (3H, d, J = 6.6 Hz, CH₃-5'), 0.84 (3H, d, J = 6.6 Hz, CH₃-5'). ¹³C NMR (100 MHz, CDCl₃) δ : 170.1 (CO), 168.5 (CO), 141.0 (C-2'), 136.4 (Ci), 129.2 (Cm), 128.8 (Cp), 127.2 (Co), 116.4 (C-1'), 65.4 (C-3'), 42.7 (C-5), 40.7 (C-6), 26.5 (C-4'), 21.7 (CH₃-2'), 21.2 (CH₃-5'), 19.6 (CH₃-5'). $[\alpha]_{\rm D}^{25} - 21.7$ (c 1.2, CHCl₃).

Compound 3c. ¹H NMR (400 MHz, CDCl₃) δ : 5.10 (1H, s, H-1'), 5.05 (1H, s, H-1'), 4.83 (1H, d, J = 11.2 Hz, H-3'), 3.17 (1H, ddd, J = 3.3, 7.2, 10.0 Hz, H-6), 3.04 (1H, dd, J = 3.6, 15.2 Hz, H-5), 2.75 (1H, m, H-4'), 1.86 (1H, m, CH-6), 1.73 (3H, s, CH₃-2'), 1.05 (3H, d, J = 6.0 Hz, CH₃), 1.04 (3H, d, J = 6.4 Hz, CH₃), 0.97 $(3H, d, J = 6.4 \text{ Hz}, CH_3-4'), 0.82 (3H, d, J = 6.4 \text{ Hz},$ CH₃-5'). ¹³C NMR (100 MHz, CDCl₃) δ: 171.2 (CO), 169.1 (CO), 141.3 (C-2'), 116.4 (C-1'), 65.2 (C-3'), 44.0 (C-6), 39.4 (C-5), 26.6 (C-4'), 32.2 (CH-6), 22.0 (CH₃-2'), 21.3(CH₃-5'), 19.7 (CH₃), 19.6 (CH₃-4'), 19.5 (CH₃), $[\alpha]_D^{25} - 15.1$ (*c* 0.9, CHCl₃). Compound 3d. ¹H NMR (400 MHz, CDCl₃) δ : 5.10 (1H, s, H-1'), 5.06 (1H, s, H-1'), 4.85 (1H, d, J = 10.8 Hz, H-3'), 3.10 (1H, dq, J = 6.8, 7.2 Hz, H-6), 2.85 (1H, dq, J = 6.8, 7.2 Hz, H-5), 2.76 (1H, m, H-4'), 1.71 (3H, s, CH_3-2'), 1.45 (3H, d, J = 6.8 Hz, CH_3-6), 1.40 (3H, d, J = 6.8 Hz, CH₃-5), 0.97 (3H, d, J = 6.4 Hz, CH₃-5'), 0.84 (3H, d, J = 6.8 Hz, CH₃-5'). ¹³C NMR (100 MHz, CDCl₃) δ : 173.7 (2CO), 140.5 (C-2'), 116.0 (C-1'), 65.0 (C-3'), 45.6 (C-6), 38.1 (C-5), 27.1 (C-4'), 21.8 (C-2'), 21.4 (C-8), 21.4 (C-5'), 19.4 (C-4'), 15.4 (C-7). $[\alpha]_D^{25}$ –49.9 (c 1.3, CHCl₃). Compound 3e. ¹H NMR (300 MHz, CDCl₃) δ : 7.40 (5H, m, Ph), 5.11 (1H, s, H-1'), 5.06 (1H, s, H-1'), 4.86 (1H, d, J = 10.8 Hz, H-3'), 4.23 (1H, d, J = 10.2 Hz, H-6), 3.24 (1H, dq, J = 10.2, 6.9 Hz, H-5), 2.75 (1H, m, H-4'), 1.73 $(3H, s, CH_3-2')$, 1.18 $(3H, d, J = 6.9 Hz, CH_3-5)$, 0.98 $(3H, d, J = 6.6 \text{ Hz}, CH_3-4'), 0.84 (3H, d, J = 6.6 \text{ Hz},$ CH_3-5'). ¹³C NMR (75 MHz, CDCl₃) δ : 173.0 (CO), 169.0 (CO), 141.1 (C-2'), 136.3 (Ci), 129.0 (Cm), 128.7 (Cp), 128.5 (Co), 116.2 (C-1'), 66.0 (C-3'), 47.1 (C-6), (CH₃-5'), 14.7 (CH₃-5). $[\alpha]_D^{25}$ +7.77 (*c* 1.6, CHCl₃). Compound 4e. ¹H NMR (300 MHz, CDCl₃) δ : 7.36 (3H, m, Ph),7.23 (2H, m, Ph), 5.14 (1H, s, H-1'), 5.11 (1H, s, H-1'), 4.92 (1H, d, J = 11.1 Hz, H-3'), 4.60 (1H, d, J = 4.2 Hz, H-6), 3.30 (1H, qd, J = 6.9, 4.2 Hz, H-5), 2.82 (1H, m, H-4'), 1.76 (3H, s, CH₃-2'), 1.22 (3H, d, J = 6.9 Hz, CH₃-5), 0.98 (3H, d, J = 6.6 Hz, CH₃-5'), 0.86 $(3H, d, J = 6.6 \text{ Hz}, \text{CH}_3\text{-}5')$. ¹³C NMR (75 MHz, CDCl₃) δ: 173.3 (CO), 168.5 (CO), 140.7 (C-2'), 135.5 (Ci), 129.0 (Cm), 128.6 (Cp), 127.8 (Co), 116.6 (C-1'), 65.7 (C-3'), 45.7 (C-6), 44.3 (C-5), 26.8 (C-4'), 21.6 (CH₃-2'), 21.2 (CH₃-5'), 19.6 (CH₃-5'), 12.7 (CH₃-5). $[\alpha]_{D}^{25}$ -89.6 (c 1.9, CHCl₃). Mp 52 °C. Compound **3f**. ¹H NMR (400 MHz, CDCl₃) δ : 5.06 (1H, s, H-1'), 5.00 (1H, s, H-1'), 4.80 (1H, d, J = 10.0 Hz, H-3'), 3.20 (1H, ddd, J = 4.0, 11.6, 12.0 Hz, H-6), 2.70 (1H, m, H-4'), 2.50 (1H, ddd, J = 4.0, 11.6, 12.0, H-5), 2.30 (1H, m, H-7e), 1.97, 1H, m, H-10e), 1.91 (1H, m, H-8e), 1.84 (1H, m, H-9e), 1.71 (3H, s, CH₃-2'), 1.45-1.28 (4H, br, H-7_{ax}-H-10_{ax}) 0.96 (3H, d, J = 6.4 Hz, CH₃-5'), 0.80 (3H, d, J = 6.4 Hz, CH₃-5'). ¹³C NMR (100 MHz, CDCl₃) *δ*: 172.5 (CO), 168.1 (CO), 141.4 (C-2'), 116.0 (C-1'), 65.8 (C-3'), 47.7 (C-5), 39.6 (C-6), 31.5 (C-10), 27.1 (C-7), 26.0 (C-4'), 25.0 (C-8), 25.0 (C-9), 21.6 (CH₃-2'), 21.3 (CH₃-5'), 19.6 (CH₃-5'). $[\alpha]_D^{25}$ -60.1 (c 2.8, CHCl₃). Mp 32 °C.